2.3 Integer Angles

The notion of an angle in integer geometry is a generalized form of geometric continued fractions.

Definition 2.3.1.

An angle in integer geometry is rational if it is integer congruent to an angle ABCABC with A,B,CnA,B,C\in\mathbb{Z}^{n}.

To define trigonometric functions in integer geometry, we consider the following definition of integer area.

Definition 2.3.2.

Let ABC\triangle ABC be an integer triangle, that is, let A,B,CA,B,C be integer points. Then the integer area, IS(ABC)\text{IS}(\triangle ABC) is the index of the sublattice generated by the vectors ABAB and ACAC.

Remark 2.3.3.

This is the number of copies of ABAB and ACAC needed to generate the lattice 2\mathbb{Z}^{2}.

Example 2.3.4.

Let ABCABC be an integer triangle with A=(0,0),B=(3,2)A=(0,0),B=(3,2) and C=(2,5)C=(2,5).

Here, the integer area is given by

IS(ABC)=3225=|35 22|=|154|=11.\text{IS}(\triangle ABC)=\begin{Vmatrix}3&2\\ 2&5\end{Vmatrix}=|3\cdot 5\ -\ 2\cdot 2|=|15-4|=11.
Definition 2.3.5.

Let AOBAOB be a rational angle. Then the integer sine of AOBAOB is given by the formula

lsin(AOB)=IS(AOB)l(A,O)l(O,B).\operatorname{lsin}(AOB)=\frac{\text{IS}(\triangle AOB)}{\operatorname{l\ell}(% A,O)\operatorname{l\ell}(O,B)}.
Proposition 2.3.6.

Let α\alpha be a rational angle. Then lsin(α)\operatorname{lsin}(\alpha) is equal to the index of the angle α\alpha.

The proof can be found in.

Definition 2.3.7.

Let α=AOB\alpha=AOB be an integer angle. The sail of α\alpha is the boundary of the convex hull of all points included in α\alpha other than OO.

Definition 2.3.8.

Let α\alpha be an integer angle with sail AA a broken line with vertices AiA_{i}. The lattice length sine sequence (LLS sequence for short) (ai)(a_{i}) of α\alpha is defined by the rule

a2k=l(Ak,Ak+1);a_{2k}=\operatorname{l\ell}(A_{k},A_{k+1});
a2k+1=lsin(Ak1AkAk+1).a_{2k+1}=\operatorname{lsin}(\angle A_{k-1}A_{k}A_{k+1}).
Definition 2.3.9.

Let α\alpha be an integer angle with LLS-sequence (a1,a2,)(a_{1},a_{2},\ldots). Then the integer tangent of α\alpha is given by the regular continued fraction

ltan(α)=[a1;a2,].\operatorname{ltan}(\alpha)=[a_{1};a_{2},\ldots].
Definition 2.3.10.

Let α\alpha be an integer angle. Then the integer cosine of α\alpha is given:

lcos(α)=lsin(α)ltan(α)\operatorname{lcos}(\alpha)=\frac{\operatorname{lsin}(\alpha)}{\operatorname{% ltan}(\alpha)}
Proposition 2.3.11.

Let α\alpha be an integer angle. Recall that there exists a co-prime pair of integers m,nm,n such that α\alpha is integer congruent to some angle α¯=AOB\overline{\alpha}=AOB with A=(1,0)A=(1,0), O=(0,0)O=(0,0) and B=(m,n)B=(m,n).

Then the LLS sequence for α\alpha is a continued fraction sequence for mn.\frac{m}{n}.

Corollary 2.3.12.

Let α\alpha be integer congruent to AOBAOB with A=(1,0)A=(1,0), O=(0,0)O=(0,0) and B=(m,n)B=(m,n). Then

ltan(α)=mn.\operatorname{ltan}(\alpha)=\frac{m}{n}.